(10/x^2+1)-5=3

Simple and best practice solution for (10/x^2+1)-5=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10/x^2+1)-5=3 equation:



(10/x^2+1)-5=3
We move all terms to the left:
(10/x^2+1)-5-(3)=0
Domain of the equation: x^2+1)!=0
x∈R
We add all the numbers together, and all the variables
(10/x^2+1)-8=0
We get rid of parentheses
10/x^2+1-8=0
We multiply all the terms by the denominator
1*x^2-8*x^2+10=0
We add all the numbers together, and all the variables
-7x^2+10=0
a = -7; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-7)·10
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*-7}=\frac{0-2\sqrt{70}}{-14} =-\frac{2\sqrt{70}}{-14} =-\frac{\sqrt{70}}{-7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*-7}=\frac{0+2\sqrt{70}}{-14} =\frac{2\sqrt{70}}{-14} =\frac{\sqrt{70}}{-7} $

See similar equations:

| 1/2(b-3)=5.2 | | 5x+2(x-3)=-2(x-1)7x-6=-2x-27x-6=-2x+27x-3=-2x-1 | | 2m-13=3-1m | | 3/4g=(−12) | | 21=6p | | 15x+1/2=9 | | x+(x-10)=11 | | 11u-9u=10 | | 3m=3=12 | | 3/4t-2=1/2(t+2) | | 300-x=265 | | 11/5e+2=3/5e+10 | | 4K=6k+36 | | 4+24.5t-4.9t^2=0 | | 7u=36+u | | 2(9n-1)*7(n+6)=-60 | | x=14+3/13 | | 12x+(-4)=3x+3 | | x^2-1=1/2x^2+7/4x-1 | | 2​(x−​6)+6=4x−2 | | 4x+23+9x-28=180 | | 7×n=14+21 | | 4(n-3)=2(n+1) | | 7-3|3x-6|=-14 | | 2(2x+25)=2(3x) | | b-5+6b=35 | | 8(w-3)-6w=-30 | | 34-4x=-1 | | 3x-2x=-7-10 | | 7-3(3x-6)=-14 | | 16=6(v+6)-2v | | 5(3n+1)=5(2n-3) |

Equations solver categories